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Exact vacuum solution of a(1+ 2)-dimensional Poincaregauge theory:
BTZ solution with torsion
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In the framework of1+2)-dimensional Poincargauge gravity, we start from the Lagrangian of the Mielke-
Baekler model that depends on torsion and curvature and inctratesationalandLorentzianChern-Simons
terms. We find a general stationary circularly symmetric vacuum solution of the field equations. We determine
the properties of this solution, in particular its mass and its angular momentum. For vanishing torsion, we
recover the BTZ solution. We also derive the general conformally flat vacuum solution with torsion. In this
framework, we discus€artan’s (3-dimensionadl spiral staircaseand find that it is not only a special case of
our new vacuum solution, but can alternatively be understood as a solution of the 3-dimensional Einstein-
Cartan theory with matter of constant pressure and constant torque.
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[. INTRODUCTION and Townsend4], and showed its exact solvability in terms
of a finite number of degrees of freeddB6]. Also de Sitter
On first sight, (1 2)-dimensional gravity seems to be gravity, conformal gravity, and supergravity, (b+2)D, turn
rather boring. In 3 dimension@D), the Weyl tensor van- out to be equivalent to Chern-Simons theolfi@s-10]; see
ishes and the curvature is fully determined by the Ricci tenalso the recent monograph of Blagojeyid].
sor and thus, via the Einstein equation, by the energy- Mielke and Baekle(MB) proposed 41+2)D topological
momentum alone. Outside the sources the curvature is zegauge model with torsion and curvatdie?,13 from which
and there are no propagating degrees of freedom, i.e., nhe DJT model can be derived by imposing the constraint of
gravitational waves. Moreover, there is no Newtonian limit.vanishing torsion by means of a Lagrange multiplier term.
But even if spacetime is flat, it is not trivial globally. A point Gravitational theories ifi1+2)D with torsion, see also Tres-
particle, e.g., generates the spacetime geometry of a cone. juerre§ 14] and Kawai 15], are analogous to the continuum
such a geometry we have light bending, double images, ettheory of lattice defects in crystal physics, in particular, the
The spacetimes foN particles can be constructed similarly corresponding theory of dislocations relates to a torsion of
by gluing together patches dfl+2)D Minkowski space. the underlying continuum, see Krer [16], Kleinert [17],
This has been occasionally investigated since the late 1950Bereli and Verin [18,19, Katanaev and Volovich20], and
see Deseet al.[1] and the review of Carlip2]. Kohler [21]. The fresh approach of Lazf22-24 promises
Some problems ii1+3)D gravity reduce to an effective additional insight.
(1+2)D theory, such as the cosmic string, e.g., the high- The next important impact oil+2)D gravity was the
temperature behavior @fl+3)D theories also motivates the discovery of a black hole solution by Baos, Teitelboim,
study of(1+2)D theories. In this context, Deser, Jackiw, andand Zanelli(BTZ) [25]. The BTZ black hole is locally iso-
Tempelton (DJT) proposed a(1+2)D gravitational gauge metric to anti—de SittefAdS) spacetime. It can be obtained,
model with topologically generated majs3. However, the see Brill[26], from the AdS spacetime as a quotient of the
real push for(1+2)D gravitational models came when Wit- latter with the group of finite isometries. It is asymptotically
ten formulated the(1+2)D Einstein theory as a Chern- anti—de Sitter and has no curvature singularity at the origin.
Simons theory, in a similar way as proposed by Azdmio  Nevertheless, it is clearly a black hole: it has an event hori-
zon and, in the rotating case, an inner horizon. Also electri-
cally and magnetically charged generalizations are known.
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procedure, see Cataldet al. [32]. By means of the BTZ TABLE |. Exact vacuum solution of the 3D PoinCagauge
solution, many interesting questions can be addressed in tieodel of Mielke-Baekler: BTZ-like solution with torsion.
context of quantum gravity. For example, Strominger com
puted the entropy of the BTZ black hole microscopically — Vacuum
[33]. There is also a relationship between the BTZ black hole

and string theory, see Hemming and Keski-VakK&d]. field equations

X br
E naﬁ'yRﬁy—"_Ana_ ?Ta: 0

Thus, although{1+2)D gravity lacks many important fea- )—z(naﬁyTV— %ﬂaﬁ— 0 {R,z=0
tures of real(1+3)D gravity, it keeps enough characteristic
structure to be of interest, especially in view of the fact that 9= (r)dt
in the (1+2)D case many calculations can be done which are

: . . . coframe . dr J\2

far too involved in(1+3)D for the time being. O = (r)=1 /(_ M+ A gt 2

In this paper we show that the BTZ metric can be embed- p(r)’ 2r ¢
ded in the framework of the specific Poincayauge model . J
proposed by Mielke and Baekler. We arrive at a “BTZ solu- M:r( - PdH d¢
tion with torsion,” see Table |, and discuss some of its char-
acteristic properties. metric = 9t 9t I 9 4 9P

In Sec. Il we introduce briefly the MB model and its field 9=~ VeVt 9T+ d%e 97
equations. In vacuum, these vyield constant torsion and con- " " 3 1 T
stant curvature and, by a suitable ansatz, we obtain the new rt'= _Frt:(ZE_Aeffr dt+| 5~ zf)dqﬁ
solution displayed in Table I. In Sec. Ill we discuss some of oo B B T
the properties of our new solution. In particular, we compute [Té=_T% = l//(l’)(de‘ de

its quasi-local energy and angular momentum expressions as
it was suggested to us by Nester, Chen, Tung, and 384

" - J dr
St _rté— | 4 T | —

40]. . et <2r2+9¢(r)
In Sec. IV we derive the general conformally flat vacuum

solution and show its relation to the solution of Table I. In torsion 2T
the final Sec. V, we point out that Cartan’s spiral staircase, an T :2?’7
example of a simple non-Euclidean connection that is con- R
structed from 3D Euclidean space, can be understood as a Riemann-CartaiR*#=— 9#
specific vacuum solution of the MB model as well as a so- curvature ¢
lution of 3D Einstein-Cartan theory with matter of constant RiemannRA= A .38
pressure and constant torque.
. TR
Riemann-CartatC“= — F n
Cotton
II. MIELKE-BAEKLER MODEL AND ITS BTZ-LIKE . ~
EXACT SOLUTION RiemannC*=0
Our geometric arena is 3D Riemann-Cartan space. The s +A€%0
basic variables are theoframe 9= ¢;*dx' and theLorentz 2 X - 67+ AL
connection'“#=T';*/dx". Latin lettersi,j,...=0,1,2 de- T= Pr20:0, | x2t20.0,
note holonomic or coordinate indices and greek letters constants
a,B, ...=0,1,2 anholonomic or frame indices. In amtho- i

normal coframewhich we assume for the rest of our article,
the metric is given byg=— 9°@ 9°+ 9@ 91+ 922 92. In
such an orthonormal coframe, the connection is antisymmet-
ric T*#=—TP#* The frame dual to the coframe reads
=€ ,0;, with e, |9#= 67, where| denotes the interior prod-
uct. We introduce the abbreviatiof®®: - - :== 99\ 9B . . - In a Riemann-Cartan space, the connection can be ex-
and thez-basis(the asterisk denotes the Hodge-star operaprsssed;n terms of the torsion and the anholonomity 2-form
tor) 7]::*1! na::*ﬂa! naﬁzz*ﬁaﬂ1 naﬁy::*ﬁaﬁy' In 0%:=dd !
3 dimensions,;,z, is the totally antisymmetric unit tensor.
For our conventions, one should comp4]. 1

From the gauge potentials coframe and connection, we Pap=ealp— 5 (alepl,) 37— €Ty
can derive the field strengthersion and curvature (D de-
notes the exterior covariant derivatjye

1
+§(eaJeBJTy)ﬁy! (2)

T*=D9*=d9*+T ;A\, R P=dl T AT L
(1) see[41], Eqg.(3.10.9, for dg,;=0 andQ,z=0.
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Mielke and Baeklef12,13 considered the following La- it, together with Eq(6), into Eq.(2). This yieldsI, z which,

grangian: together with the known curvature, leads to
2¢ (A+br)?
(. 4 « 20 g a
) r, /\dFB —§Fa /\F'By/\r'}/ + Lmat- ) a? Aeft 2 2.2
Ni(r)=C+ ——— — —"(A"=2ABr-B7"), (8
3 (rB+A)2 B?

The first term, the usual Einstein-Cartan term, is followed bywhere A,B,C,«, 8 are integration constants. Moreover, we
the cosmological term and the Chern-Simons terms for torintroduced an effective cosmological constafts, see
sion and curvature, s¢d2]. The last term denotes the matter Table I. By means of the coordinate transformation Ar
Lagrangian that is minimally coupled to gravity. The 3D +B and ¢— ¢+ Bt and some change in notation, we arrive
gravitational constant guarantees dimensional consistency.at our new BTZ-like solution with torsion, see Table | for its
The Einstein-Cartan piece is multiplied by a dimensionlesexplicit form. The topological terms in the Lagrangian will
constanty, with y=1 or y=0, and the Chern-Simons induce an effective cosmological constant even if the “bare”
pieces by the dimensionless “vacuum anglés’and 6, . cosmological constanf\ vanishes. If we putf, = 6:=0,
From this model we can derive the Deser-Jackiw-thenA4=—A andT“=0, and we fall back to the standard
Tempelton(DJT) model of topological massive gravifyd] = BTZ solution[25].
by adding a Lagrange multiplier terim, T¢ to the Lagrang-

ian Vg thereby enforcingzanishing torsionQuite recently, Ill. PROPERTIES OF OUR SOLUTION

Blagojevic and Vasilic [43] considered a restricted MB

model with 62+ yA€?=0, 6, =0, andy=1, which yields, A. Autoparallels and extremals

in vacuum, the field equatioR*’=0, i.e.,vanishing curva- In a Riemann-Cartan space, the autoparallsisaightest

ture, introducing thereby the teleparallel geometry of emptyjines) and the extremals or geodesigsngest/shortest lings
|[ng]tor3|on square termsvas developed by Sousa and Maluf obeys, in terms of a suitable affine paramesghe equation
44].

We find the field equations by variation (&) with respect d2xk(s) dx\(s) dx(s)
to the coframe andLorent2 connection: i

=0. 9)

ds? " ds ds
X By Or = ; i K
5 NapyRE7H A 70— TTa_eza’ (4)  The (holonomig components of the connectidh;* depend
on metric and torsion according to
2 1By 2¢ « « Ik=T " =Kk, Kijk==§(—Tijk+Tjki_Tkij)a (10

The 2-forms of the material energy-momentum and spin cur-

rents are defined by 3 ,:=6Ln,/60% and 7,4 whereTijk is the Christoffel symbol anKijk the contortion.

:= 6L ma 61 P, respectively. In Eq. (9), only the symmetric part of the connection enters.

The field equations represent inhomogeneous algebraBy means of Eq(10), it can be expressed as

equations in torsiom“ and cutgvatureR“B. We can resolve

;hem Wlth respect ta@ an(_jR [12,13. The vacuumfield F(ij)kzl—‘(ij)k+Tk(ij). (11)
quations result by equating, and 7,4 to zero. Then, by

assumingy?+ 266, #0, we obtainT,=277,/¢ and Raps

A Th | i h ical i f
=R19a,3/€2; for the definitions offand . see Table I. The e extremals are determined by the metrical properties o

spacetime alone and follow from the variation of the world

torsion has only amxial part and, similarly, the curvature a — _
scalar part, both with 1 independent component. length [ V—gjjx'x! in the standard way:
A solution is specified by a pair¥®,I'*#). We start with _ '
a static and circularly symmetriorthonormal coframe, d’x¥(s) . I(dx'(s) dx!(s)
ds? I ds ds
I'=N(r)dt, o' 9?=G(r)[—W(r)dt+dé¢],

N(r)’ For our solution, see Table I,

(6)

whereN(r), G(r), andW(r) are free functions. Since the

T
torsion is known from the field equations, we can substitute Ti=2gmi = Tigy=0- (13
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Thus, the torsion dependent piece drops out in Eff§.and  ence of a quantityr between a solution and the background
(9). Autoparallels and extremals coincide and we get thgs Aq:=a— . Then, the quasi-local charges are given by
same geodesics as in the case of the standard BTZ solution [gg]
Riemannian spacetime.
BN (NJ9)AH, + A9*N|H,)
B. Killing vectors (N) (NJO)AH, + A9NJH,)
In a Riemann-Cartan space we cgh¢“e, a Killing i

vector if the latter is the generator of a symmetry transfor- (ﬁﬁN“)AHag + AF“ﬂ(NJHaB)
mation of the metric and of the connection according to —

D,NAH,, + ATF(NJH,p)
£,9=0, £I =0, (14) (DANIAH o

(19
seg[41], p. 83. These two relations can be recast into a mor

convenient form, %’he upper(lower) line in the braces is chosen if the field

strengths(momenta are prescribed on the boundary. The
(15) momenta of our solution read,=—(6/2¢?)9, and

e /Dés=0,
(D) Hag=(X/20) 5~ (8/2)T 5.
We derive the quasi-local energy and angular momentum
D(e,]D &)+ IR, =0, (16) by taking for the vector fieldN the Killing vectorsd, or d,

5 respectively,
where D refers to the Riemannian part of the connection )
(Levi-Civita connectioh and D to the transposed connec- EB(0) =[OL(AerlI—TM) + x(Ael “— VAerir ) ]d b

tion: D:=d+T ,f:=d+T #+e,|TA. For our solution we 1 )
find two Killing vectors, namely, YA (20,7 = 0)M =20 O A ed T

® (¢) +x({Aerd—2M T ]dt, 20

P an X(EAed—2MT)] (20
that is, the same Killing vectors as in the case of the standard®3(J,,) = — ;‘H 0 (LM — ﬁ)}dqﬂ— [X(Aeﬁﬂ_ VA 1)
BTZ solution.

1 T
C. Quasilocal conserved quantities + Z(GLT_ X)(EM—T13)+ ﬁ‘] dt. (21

Now we consider the conserved quantities of our solution, . _ . . .
Nester, Chen, and W(B8], see also the literature quoted We assume the eX|ste_nce of the Einstein-Cartan piece, i.e.,
there, proposed a quasi-local boundary expression withiy =1- In order to obtain total energy and angular momen-
metric-affine gravity, a theory the spacetime of which goedU™: We have to integrate, far=const, ﬂle% S over a full
beyond the Riemann-Cartan structure in that it carries addicircle and to perform the limit—ce. For7= fr=6, =0, our
tionally a nonmetricity. We adapt the formulas[88] for the solution reduces to the standard BTZ one. In that case, total
case of vanishing nonmetricty. The derivation starts from £n€rgy and total angular momentum reduceMoand J.
first—order Lagrange-form V that is at most quadratic in its Thus, in our conventions, the gravitational constantfis

field strengthsT® and R*. The corresponding momenta — 7 Moreover, as in general relativity, see Wald5], p. _
readH ,:=— dV/aT® and Haﬁ:z_aV/aRaﬂ' The Lagrang- 296), we introduce a factor- 1 into the angular momentum:

ian can be decomposed with respect to a vector fieldith 1 om
Njdv=1: Em=;Iimf [0 (At I—TM)
r—o 0
V=dv/AN|V

+ (A 2= VAer ) 1d
=:dv/\[— (ENO")/AH ,— (ENT P)AH

=M—=260(TM — At J), (22
—N%§,—dB]. (18
1. 2m |1
The Hamilton 2-formy is defined bys:=N“, +d®. Since L.=(=1)—lim fo ~|33t 0 (EM=1J)|d¢
$, turns out to be proportional to the field equations, only o
the spatial boundary 1-for®8 contributes to the boundary =J+26,((M-TJ). (23)

integral of $. In order to obtain finite values for the quasi-

local “charges,” the boundary term has to be compared to ahus, forg, =0, the two integration constant$ andJ have
reference or background solution which will be denoted by aheir conventional interpretation as eneigyas$ and angu-
bar over the corresponding symbol. As background, wdar momentum, as with the BTZ metric in general relativity.
choose our solution witivi=0, J=0. Moreover, the differ- However, ford, #0, we find in each case admixtures from
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the other “charge,” respectively. This is not too surprising, Z
since torsion and curvature emerge in both field equations.

IV. GENERAL CONFORMALLY FLAT VACUUM
SOLUTION WITH TORSION

The vacuum field equations of the MB model imply con-
stant Riemann-Cartancurvature and constant Riemannian
curvature. The Cotton 2-form reads

C,i=DL,, L,=e4R, A+ (egle RPN, .

(24

1
2(n—1)

The Riemannian Cotton 2-form is zero. Thus, the metric is

conformally flat, see, e.g[46]. Hence the ansatz FIG. 1. Cartan’s spiral staircaseCartan’s rules[49] for the
introduction of a non-Euclidean connection in a 3D Euclidean space
6 dt i dx 5 dy are as follows:(i) A vector which is parallelly transported along
=5 V=3 =3 (25 jtself does not changef. a vector directed and transported in the
direction. (ii) A vector that is orthogonal to the direction of trans-
whereW =W (t,x,y), via the first field equation, yields port rotates with a prescribed constant “velocit§c¢f. a vector in
the y direction transported in thg direction. The winding sense
P=PO(t)+ PO (x)+TV(y), (26) around the three coordinate axes is always positive.
— 5qu’(x): &ttq;(t): — &yyllf(y). (27 V. CARTAN’S SPIRAL STAIRCASE

This leads to a general soluion with 5 parameters !f W€ thenset\e;=0, see Eqsi30) and(31), we arrive at

A,B,C,D,E,

| T
a— 5% af__ papB
T=A(—t2+x2+y?) +Bt+Cx+Dy+E, (28 de=g7dx, I'*P=gn® (33

with one constraint on the parameters, The components of the connection are totally antisymmetric:

0=B2—C2— D2+ BAE+ A o. (29) l"ya_[3=eyjl“aﬁ=_(77€)nwﬁ. The _Riemannian curvature
vanishes. By simple algebra we find
ForB=C=D=0, E=1 we recover the usual form of the
(antiode Sitter metric, forA=B=D=E=0 the Poincare T - T?
metric. Coordinate transformations that yield the BTZ metric T=227% R*¥=0, R*"=- ﬁﬁaﬁ- (34)
are given in[2].

In the anti—de Sitter case, the solution reads . .
’ This is a subcase of our solution of Table I.

Agi In fact, for Euclidean signature, we recover Cartan’s spiral
9=—vo , Y=1- T(—t2+ x2+y?), (300 3D staircase of 192p49], see Fig. 1:
“... imagine a spac€ which corresponds point by point
T A gt with a Euclidean spack, the correspondence preserving dis-
F”‘B:z P+ xle 9Pl 3 (31 tances. The difference between the two spaces is the follow-
ing: two orthogonal triads issuing from two poirdsand A’
For 6:=0, we recover the solution of Dereli and Verc infinite;ima!ly ne_arby inF will be parallel when the corre-
[19]. spo_ndlng trl'ad_s irE may be deduce.d one from the other by
If the coupling constants are chosen such that a given helicoidal displacemelfof right-handed sense, for
example, having as its axis the line joining the origins. The
62+ YA £2=0, (32)  straight lines inF thus correspond to the straight lineskn
they are geodesics. The spa€éehus defined admits a six
the Riemann-Cartan curvature is z&g,=0 and the torsion ~parameter group of transformations; it would be our ordinary
reduces to7= ¢ \/As. We obtain ateleparallel subcasef  SPace as viewed by observers whose perceptions have been
the MB model. The teleparallel sector of the MB model, twisted. Mechanically, it corresponds to a medium having
defined by Eq(32) and6, =0, is extensively studied i3], constant pressure and constant internal torque.”
see also the closely related ca$é4,47,48. We stress that Obviously, Cartan’s prescriptions are reflected in the so-
our exact solution carries both, torsiand curvature. There- lution (33). For Eq.(33), autoparallels and extremals coin-
fore it is more general and should be carefully distinguishectide. Thus, in the spiral staircase, extremals Buelidean
from its teleparallel limit. straight lines. This is apparent in Cartan’s construction.
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Cartan apparently had in mind a 3D space with Euclidearwe find a constant hydrostatjressure—72/¢2 and a con-
signature. For an alternative interpretation of Cartan’s spirastanttorque —7/¢2, exactly as foreseen by Cartan. In solid
staircase we consider the 3D Einstein-Cartan field equationstate physics, this corresponds to a superposition of three

without cosmological constant:

! By
Enaﬁ"yR :eza ) (35)

1
EﬂaByT‘yngaB. (36)

The coframe and the connection of E§3), Euclidean sig-

“forests” of screw dislocationghat are parallel to the coor-
dinate axes with constant and equal densities. However, in a
real crystal, the Riemann-Cartan curvat®¥ has to vanish

(instead of the Riemannian curvatuRé?, as in our exact

solution and no pressure would emerge macroscopically.
Thus we can either view the spiral staircase as a vacuum

solution and special case of our solution of Table | or as a

material solution of 3D Einstein-Cartan thedyyith Euclid-

ean signatune carrying constant pressure and constant

nature assumed, form a solution of the Einstein-Cartan fielgyqye.

equationswith matter provided the energy-momentum cur-
rent (for Euclidean signature the force stress tertg) and

the spin currenthere the torque or moment stress tensor

s,57) are constant,

TZ

T
Eaz:taﬁnﬁz—ﬁr]a and  7,5=:5,5"1,=—

ﬁ ﬁaﬁ .
(37

Inversion yields

Sapy= — ﬁ Napy- (38)
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