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Exact vacuum solution of a„1¿2…-dimensional Poincarégauge theory:
BTZ solution with torsion
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In the framework of~112!-dimensional Poincare´ gauge gravity, we start from the Lagrangian of the Mielke-
Baekler model that depends on torsion and curvature and includestranslationalandLorentzianChern-Simons
terms. We find a general stationary circularly symmetric vacuum solution of the field equations. We determine
the properties of this solution, in particular its mass and its angular momentum. For vanishing torsion, we
recover the BTZ solution. We also derive the general conformally flat vacuum solution with torsion. In this
framework, we discussCartan’s ~3-dimensional! spiral staircaseand find that it is not only a special case of
our new vacuum solution, but can alternatively be understood as a solution of the 3-dimensional Einstein-
Cartan theory with matter of constant pressure and constant torque.
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I. INTRODUCTION

On first sight, (112)-dimensional gravity seems to b
rather boring. In 3 dimensions~3D!, the Weyl tensor van-
ishes and the curvature is fully determined by the Ricci t
sor and thus, via the Einstein equation, by the ener
momentum alone. Outside the sources the curvature is
and there are no propagating degrees of freedom, i.e.
gravitational waves. Moreover, there is no Newtonian lim
But even if spacetime is flat, it is not trivial globally. A poin
particle, e.g., generates the spacetime geometry of a con
such a geometry we have light bending, double images,
The spacetimes forN particles can be constructed similar
by gluing together patches of~112!D Minkowski space.
This has been occasionally investigated since the late 19
see Deseret al. @1# and the review of Carlip@2#.

Some problems in~113!D gravity reduce to an effective
~112!D theory, such as the cosmic string, e.g., the hig
temperature behavior of~113!D theories also motivates th
study of~112!D theories. In this context, Deser, Jackiw, a
Tempelton ~DJT! proposed a~112!D gravitational gauge
model with topologically generated mass@3#. However, the
real push for~112!D gravitational models came when Wi
ten formulated the~112!D Einstein theory as a Chern
Simons theory, in a similar way as proposed by Achu´carro
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and Townsend@4#, and showed its exact solvability in term
of a finite number of degrees of freedom@5,6#. Also de Sitter
gravity, conformal gravity, and supergravity, in~112!D, turn
out to be equivalent to Chern-Simons theories@7–10#; see
also the recent monograph of Blagojevic´ @11#.

Mielke and Baekler~MB! proposed a~112!D topological
gauge model with torsion and curvature@12,13# from which
the DJT model can be derived by imposing the constrain
vanishing torsion by means of a Lagrange multiplier ter
Gravitational theories in~112!D with torsion, see also Tres
guerres@14# and Kawai@15#, are analogous to the continuum
theory of lattice defects in crystal physics, in particular, t
corresponding theory of dislocations relates to a torsion
the underlying continuum, see Kro¨ner @16#, Kleinert @17#,
Dereli and Verc¸in @18,19#, Katanaev and Volovich@20#, and
Kohler @21#. The fresh approach of Lazar@22–24# promises
additional insight.

The next important impact on~112!D gravity was the
discovery of a black hole solution by Ban˜ados, Teitelboim,
and Zanelli~BTZ! @25#. The BTZ black hole is locally iso-
metric to anti–de Sitter~AdS! spacetime. It can be obtained
see Brill @26#, from the AdS spacetime as a quotient of t
latter with the group of finite isometries. It is asymptotical
anti–de Sitter and has no curvature singularity at the orig
Nevertheless, it is clearly a black hole: it has an event h
zon and, in the rotating case, an inner horizon. Also elec
cally and magnetically charged generalizations are kno
For extensive discussions see the reviews@2,27–31#. The
relevance to~113!D gravity can also be seen from the fa
that the BTZ solution can be derived from the~113!D
Pleban´ski-Carter metric by means of a dimensional reduct
©2003 The American Physical Society16-1
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procedure, see Cataldoet al. @32#. By means of the BTZ
solution, many interesting questions can be addressed in
context of quantum gravity. For example, Strominger co
puted the entropy of the BTZ black hole microscopica
@33#. There is also a relationship between the BTZ black h
and string theory, see Hemming and Keski-Vakkuri@34#.

Thus, although~112!D gravity lacks many important fea
tures of real,~113!D gravity, it keeps enough characterist
structure to be of interest, especially in view of the fact th
in the ~112!D case many calculations can be done which
far too involved in~113!D for the time being.

In this paper we show that the BTZ metric can be emb
ded in the framework of the specific Poincare´ gauge model
proposed by Mielke and Baekler. We arrive at a ‘‘BTZ sol
tion with torsion,’’ see Table I, and discuss some of its ch
acteristic properties.

In Sec. II we introduce briefly the MB model and its fie
equations. In vacuum, these yield constant torsion and c
stant curvature and, by a suitable ansatz, we obtain the
solution displayed in Table I. In Sec. III we discuss some
the properties of our new solution. In particular, we comp
its quasi-local energy and angular momentum expression
it was suggested to us by Nester, Chen, Tung, and Wu@35–
40#.

In Sec. IV we derive the general conformally flat vacuu
solution and show its relation to the solution of Table I.
the final Sec. V, we point out that Cartan’s spiral staircase
example of a simple non-Euclidean connection that is c
structed from 3D Euclidean space, can be understood
specific vacuum solution of the MB model as well as a
lution of 3D Einstein-Cartan theory with matter of consta
pressure and constant torque.

II. MIELKE-BAEKLER MODEL AND ITS BTZ-LIKE
EXACT SOLUTION

Our geometric arena is 3D Riemann-Cartan space.
basic variables are thecoframeqa5ei

adxi and theLorentz
connectionGab5G i

abdxi . Latin letters i , j , . . .50,1,2 de-
note holonomic or coordinate indices and greek lett
a,b, . . .50̂,1̂,2̂ anholonomic or frame indices. In anortho-
normal coframe, which we assume for the rest of our articl
the metric is given byg52q 0̂

^ q 0̂1q 1̂
^ q 1̂1q 2̂

^ q 2̂. In
such an orthonormal coframe, the connection is antisymm
ric Gab52Gba. The frame dual to the coframe readsea

5ei
a] i , with eacqb5da

b , wherec denotes the interior prod
uct. We introduce the abbreviationqab . . .

ªqa`qb`•••

and theh-basis~the asterisk denotes the Hodge-star ope
tor! hª !1, haª

!qa , habª
!qab , habgª

!qabg . In
3 dimensions,habg is the totally antisymmetric unit tenso
For our conventions, one should compare@41#.

From the gauge potentials coframe and connection,
can derive the field strengthstorsion and curvature (D de-
notes the exterior covariant derivative!,

Ta
ªDqa5dqa1Gb

a`qb, Ra
b
ªdGa

b2Ga
g`Gg

b.
~1!
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In a Riemann-Cartan space, the connection can be
pressed in terms of the torsion and the anholonomity 2-fo
Va

ªdqa,

Gab5e[acVb]2
1

2
~eacebcVg!qg2e[acTb]

1
1

2
~eacebcTg!qg, ~2!

see@41#, Eq. ~3.10.6!, for dgab50 andQab50.

TABLE I. Exact vacuum solution of the 3D Poincare´ gauge
model of Mielke-Baekler: BTZ-like solution with torsion.

Vacuum x

2
habgR

bg1Lha2
uT

,
Ta50

field equations x

2
habgTg2

uT

2,
qab2uL,Rab50

q t̂5c~r !dt
coframe

q r̂5
dr

c~r !
, c~r !ªAS J

2r D
2

2M1Leffr
2

qf̂5r S 2
J

2r 2
dt1df D

metric g52q t̂
^ q t̂1q r̂

^ q r̂1qf̂
^ qf̂

G t̂ r̂52G r̂ t̂5S T
,

J

2r
2Leffr Ddt1S J

2r
2

T
,

r Ddf

connection
G r̂ f̂52Gf̂ r̂5c~r !S T

,
dt1df D

Gf̂ t̂52G t̂ f̂52S J

2r 2
1

T
, D dr

c~r !

torsion
Ta52

T
,

ha

Riemann-CartanRab5
R
,2

qab

curvature

RiemannR̃ab5Leffq
ab

Riemann-CartanCa52
T R
,3

ha

Cotton

RiemannC̃a50

Tª
2

uT

2
x1L,2uL

x212uTuL

, Rª2
uT

21xL,2

x212uTuL

constants

Leffª
T 21R

,2
6-2
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Mielke and Baekler@12,13# considered the following La-
grangian:

VMB52
x

2,
Rab`hab2

L

,
h1

uT

2,2
qa`Ta

2
uL

2 S Ga
b`dGb

a2
2

3
Ga

b`Gb
g`Gg

aD1Lmat.

~3!

The first term, the usual Einstein-Cartan term, is followed
the cosmological term and the Chern-Simons terms for
sion and curvature, see@42#. The last term denotes the matt
Lagrangian that is minimally coupled to gravity. The 3
gravitational constant, guarantees dimensional consisten
The Einstein-Cartan piece is multiplied by a dimensionl
constantx, with x51 or x50, and the Chern-Simon
pieces by the dimensionless ‘‘vacuum angles’’uT anduL .

From this model we can derive the Deser-Jack
Tempelton~DJT! model of topological massive gravity@3#
by adding a Lagrange multiplier termlaTa to the Lagrang-
ian VMB thereby enforcingvanishing torsion. Quite recently,
Blagojević and Vasilić @43# considered a restricted MB
model withuT

21xL,250, uL50, andx51, which yields,
in vacuum, the field equationRab50, i.e.,vanishing curva-
ture, introducing thereby the teleparallel geometry of emp
spacetime dynamically. A similar teleparallel model~includ-
ing torsion square terms! was developed by Sousa and Mal
@44#.

We find the field equations by variation of~3! with respect
to the coframe and~Lorentz! connection:

x

2
habgRbg1Lha2

uT

,
Ta5,Sa , ~4!

x

2
habgTg2

uT

2,
qab2uL,Rab5,tab . ~5!

The 2-forms of the material energy-momentum and spin c
rents are defined by SaªdLmat/dua and tab
ªdLmat/dGa

b, respectively.
The field equations represent inhomogeneous algeb

equations in torsionTa and curvatureRab. We can resolve
them with respect toTa andRab @12,13#. The vacuumfield
equations result by equatingSa and tab to zero. Then, by
assumingx212uTuLÞ0, we obtainTa52Tha /, and Rab
5Rqab /,2; for the definitions ofT andR, see Table I. The
torsion has only anaxial part and, similarly, the curvature
scalar part, both with 1 independent component.

A solution is specified by a pair (qa,Gab). We start with
a static and circularly symmetric~orthonormal! coframe,

q t̂5N~r !dt, q r̂5
dr

N~r !
, qf̂5G~r !@2W~r !dt1df#,

~6!

whereN(r ), G(r ), andW(r ) are free functions. Since th
torsion is known from the field equations, we can substit
12401
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it, together with Eq.~6!, into Eq.~2!. This yieldsGab which,
together with the known curvature, leads to

G5A1Br, W5
a

~A1br !2
1b, ~7!

N2~r !5C1
a2

~rB1A!2
2

Leff

B2
~A222ABr2B2r 2!, ~8!

whereA,B,C,a,b are integration constants. Moreover, w
introduced an effective cosmological constantLeff , see
Table I. By means of the coordinate transformationr→Ar
1B andf→f1bt and some change in notation, we arriv
at our new BTZ-like solution with torsion, see Table I for i
explicit form. The topological terms in the Lagrangian w
induce an effective cosmological constant even if the ‘‘ba
cosmological constantL vanishes. If we putuL5uT50,
thenLeff52L andTa50, and we fall back to the standar
BTZ solution @25#.

III. PROPERTIES OF OUR SOLUTION

A. Autoparallels and extremals

In a Riemann-Cartan space, the autoparallels~straightest
lines! and the extremals or geodesics~longest/shortest lines!
do not coincide in general. An autoparallel curvexi(s)
obeys, in terms of a suitable affine parameters, the equation

d2xk~s!

ds2
1G i j

k
dxi~s!

ds

dxj~s!

ds
50. ~9!

The ~holonomic! components of the connectionG i j
k depend

on metric and torsion according to

G i j
k5G̃ i j

k2Ki j
k, Ki j

k
ª

1

2
~2Ti j

k1Tj
k
i2Tk

i j !, ~10!

whereG̃ i j
k is the Christoffel symbol andKi j

k the contortion.
In Eq. ~9!, only the symmetric part of the connection ente
By means of Eq.~10!, it can be expressed as

G ( i j )
k5G̃ ( i j )

k1Tk
( i j ) . ~11!

The extremals are determined by the metrical properties
spacetime alone and follow from the variation of the wo

length*A2gi j ẋ
i ẋ j in the standard way:

d2xk~s!

ds2
1G̃ i j

k
dxi~s!

ds

dxj~s!

ds
50. ~12!

For our solution, see Table I,

Ti jk52
T
,

h i jk ⇒ Ti ( jk)50. ~13!
6-3
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Thus, the torsion dependent piece drops out in Eqs.~11! and
~9!. Autoparallels and extremals coincide and we get
same geodesics as in the case of the standard BTZ soluti
Riemannian spacetime.

B. Killing vectors

In a Riemann-Cartan space we callj5jaea a Killing
vector if the latter is the generator of a symmetry transf
mation of the metric and of the connection according to

£jg50, £jGa
b50, ~14!

see@41#, p. 83. These two relations can be recast into a m
convenient form,

e(acD̃jb)50, ~15!

D~eacD_jb!1j cRa
b50, ~16!

where D̃ refers to the Riemannian part of the connecti

~Levi-Civita connection! and D_ to the transposed connec

tion: D_ªd1 G
_

a
b
ªd1Ga

b1eacTb. For our solution we
find two Killing vectors, namely,

j
~ t !

ª] t and j
~f!

ª]f , ~17!

that is, the same Killing vectors as in the case of the stand
BTZ solution.

C. Quasilocal conserved quantities

Now we consider the conserved quantities of our soluti
Nester, Chen, and Wu@38#, see also the literature quote
there, proposed a quasi-local boundary expression wi
metric-affine gravity, a theory the spacetime of which go
beyond the Riemann-Cartan structure in that it carries a
tionally a nonmetricity. We adapt the formulas of@38# for the
case of vanishing nonmetricty. The derivation starts from
first–order Lagrangen-form V that is at most quadratic in it
field strengthsTa and Rab. The corresponding moment
readHaª2]V/]Ta and Habª2]V/]Rab. The Lagrang-
ian can be decomposed with respect to a vector fieldN, with
Ncdn51:

V5dn`NcV

5:dn`@2~£Nqa!`Ha2~£NGa
b!`Ha

b

2NaHa2dB#. ~18!

The Hamilton 2-formH is defined byHªNaHa1dB. Since
Ha turns out to be proportional to the field equations, on
the spatial boundary 1-formB contributes to the boundar
integral ofH. In order to obtain finite values for the quas
local ‘‘charges,’’ the boundary term has to be compared t
reference or background solution which will be denoted b
bar over the corresponding symbol. As background,
choose our solution withM50, J50. Moreover, the differ-
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ence of a quantitya between a solution and the backgrou
is Daªa2ā. Then, the quasi-local charges are given
@38#

B~N!ª2H ~Ncqa!DHa 1 Dqa~NcH̄a!

~Ncq̄a!DHa 1 Dqa~NcHa!
J

2H ~ D_bNa!DHab
1 DGab~NcH̄ab!

~ D_bNa!DHab
1 DGab~NcHab!

J .

~19!

The upper~lower! line in the braces is chosen if the fiel
strengths~momenta! are prescribed on the boundary. Th
momenta of our solution readHa52(uT /2,2)qa and
Hab5(x/2,)hab2(uL/2)Gab .

We derive the quasi-local energy and angular momen
by taking for the vector fieldN the Killing vectors] t or ]f ,
respectively,

,B~] t!5@uL~Leff,J2TM !1x~Leffr
22ALeffrc!#df

2
1

2,
@~2uLT 22uT!M22,uLLeffJT

1x~,LeffJ22MT!#dt, ~20!

,B~]f!52Fx2J1uL~,M2TJ!Gdf2Fx~Leffr
22ALeffrc!

1
1

,
~uLT2x!~,M2TJ!1

uT

2,
JGdt. ~21!

We assume the existence of the Einstein-Cartan piece,
x51. In order to obtain total energy and angular mome
tum, we have to integrate, fort5const, theB’s over a full
circle and to perform the limitr→`. ForT5uT5uL50, our
solution reduces to the standard BTZ one. In that case, t
energy and total angular momentum reduce toM and J.
Thus, in our conventions, the gravitational constant is,
5p. Moreover, as in general relativity, see Wald~@45#, p.
296!, we introduce a factor21 into the angular momentum

E`5
1

p
lim
r→`

E
0

2p

@uL~Leff,J2TM !

1~Leffr
22ALeffrc!#df

5M22uL~TM2Leff,J!, ~22!

L`5~21!
1

p
lim
r→`

E
0

2p

2F1

2
J1uL~,M2TJ!Gdf

5J12uL~,M2TJ!. ~23!

Thus, foruL50, the two integration constantsM andJ have
their conventional interpretation as energy~mass! and angu-
lar momentum, as with the BTZ metric in general relativi
However, foruLÞ0, we find in each case admixtures fro
6-4
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the other ‘‘charge,’’ respectively. This is not too surprisin
since torsion and curvature emerge in both field equation

IV. GENERAL CONFORMALLY FLAT VACUUM
SOLUTION WITH TORSION

The vacuum field equations of the MB model imply co
stant Riemann-Cartancurvature and constant Riemannia
curvature. The Cotton 2-form reads

CaªDLa , LaªebcRa
b1

1

2~n21!
~ebcegcRbg!qa .

~24!

The Riemannian Cotton 2-form is zero. Thus, the metric
conformally flat, see, e.g.,@46#. Hence the ansatz

q 0̂5
dt

C
, q 1̂5

dx

C
, q 2̂5

dy

C
, ~25!

whereC5C(t,x,y), via the first field equation, yields

C5C (t)~ t !1C (x)~x!1C (y)~y!, ~26!

2]xxC
(x)5] ttC

(t)52]yyC
(y). ~27!

This leads to a general solution with 5 paramet
A,B,C,D,E,

C5A~2t21x21y2!1Bt1Cx1Dy1E, ~28!

with one constraint on the parameters,

05B22C22D216AE1Leff . ~29!

For B5C5D50, E51 we recover the usual form of th
~anti–!de Sitter metric, forA5B5D5E50 the Poincare´
metric. Coordinate transformations that yield the BTZ met
are given in@2#.

In the anti–de Sitter case, the solution reads

qa5
dxa

c
, c512

Leff

6
~2t21x21y2!, ~30!

Gab5
T
,

hab1x[aqb]
Leff

3
. ~31!

For uT50, we recover the solution of Dereli and Verc¸in
@19#.

If the coupling constants are chosen such that

uT
21xL,250, ~32!

the Riemann-Cartan curvature is zeroRab50 and the torsion
reduces toT5,ALeff. We obtain ateleparallel subcaseof
the MB model. The teleparallel sector of the MB mod
defined by Eq.~32! anduL50, is extensively studied in@43#,
see also the closely related cases@44,47,48#. We stress that
our exact solution carries both, torsionandcurvature. There-
fore it is more general and should be carefully distinguish
from its teleparallel limit.
12401
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V. CARTAN’S SPIRAL STAIRCASE

If we then setLeff50, see Eqs.~30! and~31!, we arrive at

qa5d i
adxi , Gab5

T
,

hab. ~33!

The components of the connection are totally antisymmet
Ggab5egcGab5(T/,)hgab . The Riemannian curvature
vanishes. By simple algebra we find

Ta52
T
,

ha, R̃ab50, Rab52
T 2

,2
qab. ~34!

This is a subcase of our solution of Table I.
In fact, for Euclidean signature, we recover Cartan’s sp

3D staircase of 1922@49#, see Fig. 1:

‘‘ . . . imagine a spaceF which corresponds point by poin
with a Euclidean spaceE, the correspondence preserving d
tances. The difference between the two spaces is the foll
ing: two orthogonal triads issuing from two pointsA andA8
infinitesimally nearby inF will be parallel when the corre-
sponding triads inE may be deduced one from the other b
a given helicoidal displacement~of right-handed sense, fo
example!, having as its axis the line joining the origins. Th
straight lines inF thus correspond to the straight lines inE:
they are geodesics. The spaceF thus defined admits a six
parameter group of transformations; it would be our ordin
space as viewed by observers whose perceptions have
twisted. Mechanically, it corresponds to a medium hav
constant pressure and constant internal torque.’’

Obviously, Cartan’s prescriptions are reflected in the
lution ~33!. For Eq. ~33!, autoparallels and extremals coin
cide. Thus, in the spiral staircase, extremals areEuclidean
straight lines. This is apparent in Cartan’s construction.

FIG. 1. Cartan’s spiral staircase.Cartan’s rules@49# for the
introduction of a non-Euclidean connection in a 3D Euclidean sp
are as follows:~i! A vector which is parallelly transported alon
itself does not change~cf. a vector directed and transported in thex
direction!. ~ii ! A vector that is orthogonal to the direction of tran
port rotates with a prescribed constant ‘‘velocity’’~cf. a vector in
the y direction transported in thex direction!. The winding sense
around the three coordinate axes is always positive.
6-5
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Cartan apparently had in mind a 3D space with Euclide
signature. For an alternative interpretation of Cartan’s sp
staircase we consider the 3D Einstein-Cartan field equat
without cosmological constant:

1

2
habgRbg5,Sa , ~35!

1

2
habgTg5,tab . ~36!

The coframe and the connection of Eq.~33!, Euclidean sig-
nature assumed, form a solution of the Einstein-Cartan fi
equationswith matterprovided the energy-momentum cu
rent ~for Euclidean signature the force stress tensorta

b) and
the spin current~here the torque or moment stress ten
sab

g) are constant,

Sa5:ta
bhb52

T 2

,3
ha and tab5:sab

ghg52
T
,2

qab .

~37!

Inversion yields

ta
b52

T 2

,3
da

b , sabg52
T
,2

habg . ~38!
s.

c
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We find a constant hydrostaticpressure2T 2/,3 and a con-
stanttorque2T/,2, exactly as foreseen by Cartan. In sol
state physics, this corresponds to a superposition of th
‘‘forests’’ of screw dislocationsthat are parallel to the coor
dinate axes with constant and equal densities. However,
real crystal, the Riemann-Cartan curvatureRab has to vanish
~instead of the Riemannian curvatureR̃ab, as in our exact
solution! and no pressure would emerge macroscopically

Thus we can either view the spiral staircase as a vacu
solution and special case of our solution of Table I or a
material solution of 3D Einstein-Cartan theory~with Euclid-
ean signature! carrying constant pressure and consta
torque.

ACKNOWLEDGMENTS

We thank Yuri Obukhov~Moscow! for a critical reading
of our paper and for many suggestions. Helpful remarks
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